MAYER

John Evon - Motors and Drives Specialist

Energy Consumption

Total electrical energy is 100% of the total

63% of the electrical energy use is for motors¹ - 63% of the total

60% of the motors are on pump and fans - 38% of the total

50% of pumps and fans are potential for drives - 19% of the total

50% of energy can be saved in these with drives - 9.5% of the total

Drives can save 9.5% of Total Electrical Energy Use!!2

¹ Source: US Department of Energy

² Not counting 40% not on pump and fans

Why Are Drives Used?

ENERGY SAVINGS!!!

- > Soft start = less stress
- > Longer mechanical life of motor and driven load
- > Improved power factor (0.95 to 1.0 range)
- Coordination between motors
- > Improved control of process
- > Reduced demand charge (15 min. moving window)
- > Easy interface ability with automation systems

Why Are Drives Used?

- Improved speed regulation
 - > 3 to 5% 0.3 to 0.01% (With Encoder)
- Reduced maintenance relative to...
 - ➤ Other variable speed methods
 - Constant speed methods
- Ride-thru capability during power sags and outages (load inertia and drive type dependent)
 - ➤ Full output power at 80% line voltage possible!!!
- Electronic Reversing (= Contactor-less)
- Regeneration (for specific applications)

APPLICATION TYPES

What applications are best to cut energy cost?

APPLICATION TYPES

Variable Torque Loads

- > Fans
- > Centrifugal Pumps
- > Centrifugal Fans
- Cooling Tower Fans
- > Centrifugal Blowers
- > Centrifugal Compressors

Your Best Friend - The Affinity Laws With Variable Torque

Affinity Laws

- \triangleright Q \propto N
 - Flow rate proportional to rotary speed
- \rightarrow H \propto N²
 - Head (pressure) proportional to rotary speed squared
- \triangleright P \propto N³
 - Power proportional to rotary speed cubed

Affinity Laws of Centrifugal Loads

Saving Energy by Changing Speeds

Power is Proportional to (Speed)³

* 50% speed the horsepower required is (.50*.50*.50) = 12.5%.

Speed (%RPM), Flow (%GPM or %CFM)

Application, Types

Speed	Volume	Pressure/ Head	Horsepower Required
100%	100%	100%	100%
90%	90%	81%	73%
80%	80%	64%	51%
70%	70%	49%	34%
60%	60%	36%	22%
50%	50%	25%	13%
40%	40%	16%	6%
30%	30%	9%	3%

Application Types; Pumps

Fluid Flow Control of Pump With Valve

Application Types; Pumps

Flow Control of Pump With Drive

<u>AUDIT</u>

In Real Estate it's...

LOCATION
LOCATION

AUDIT

In Energy Savings it's...

Duty Cycle
Duty Cycle
Duty Cycle

Typical Fan System Duty Cycle

Typical Fan System Duty Cycle

Air Volume Control of a Centrifugal Fan

Applications; Fans and Blowers

Outlet Control - Power Requirements

Applications; Fans and Blowers

Variable Speed - Operating Points

Applications; Fans and Blowers

Water Flow Control of a Centrifugal Pump

Pump Power Consumption

Pump Power Consumption

Pump Power Consumption

Energy Savings, Economics

Economic Justification

How to Justify the Money Spent

100% Speed 100% Load

100 HP Induction Motor

 $(100 \text{ HP})x(\frac{1}{95\% \text{ eff}})x(.746 \text{ kw/HP})x(.08 \text{ $/kWh})x(12 \text{ H/Day})x(360 \text{ D/Year}) =$

\$27,139 per year!

60% Speed
22% HP
100 HP Induction Motor

 $(100 \text{ HP x } 0.22)x(\frac{1}{95\% \text{ eff}})x(.746 \text{ kw/HP})x(.08 \text{ $/kWh})x(12 \text{ H/Day})x(360 \text{ D/Year}) =$

\$5,970 per year!

60% Speed \$5,970

Savings of \$21,169.00 Per Year

Characteristics of a Good VFD Application

- ➤ High Annual Hours of Operation
- ➤ Moderate to High Horsepower
- Variable Load (high degree of throttling)
- ➤ Running at Low Speeds
- ➤ Process Improvement from Improved Control

Load Profile - Excellent VSD Candidate

Load Profile – Average VFD Candidate

Load Profile - Poor VFD Candidate

Fan Energy Usage Variable Speed vs. Damper Control

Blower Energy Usage Variable Speed vs. Inlet Vane Control

On line Tools

Variable Frequency Drive Energy Savings Calculator

The most common applications of using variable frequency drives are pumps and fans, suppose a 24/7 operate constant pressure water supply system's pump controlled by VFD may save as high as 30% electricity cost bills.

% Speed	% Hour	
100%	[10	
90%	20	
80%	25	
70%	20	Hours / Day 24
60%	10	Days / Week 7
50%	10	Hours / Week 168
40%	5	Hours / Year 8,760
30%	0	
20%	0	
10%	0	
	100 %	**

Motor size (HP):	30	Efficiency (%):	85
Input voltage (V):	380	Frequency (Hz):	50
Full load current (A):	36	Speed (RPM):	1500
Full load input power	(kW): 20	0.1 kW	
VFD Cost (\$): 5000			
V1 D Cost (Φ). 3000	10		
	1): 0.09		
Electricity rate (\$/kWh	n): 0.09		
			360 \$
Electricity rate (\$/kWh	ation co	est without VFD: 15,8	
Electricity rate (\$/kWh	ation co	est without VFD: 15,8	
Electricity rate (\$/kWh	ation co	est without VFD: 15,8 est with VFD: 7,988 \$	

Questions??

